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ABSTRACT 

Approximate adders have been considered as a potential alternative for error tolerant applications to some 

accuracy for gains in other circuit based metrics such as power, area and delay. Existing approximate adder 

designs have shown advantages in improving many of these operational features. Now a days, low power 

applications play an important task in designing of VLSI based digital circuits. They demand to investigate 

different techniques to reduce power consumption in digital circuits while maintains computational throughput. 

Many methods are implemented to reduce the power dissipation. In a multiplier, most contribution of power 

consumption is due to generation and reduction of partial products. Among multipliers, Dadda multiplier shows 

enhanced performance in terms of power, area and delay than other multipliers. Dadda implementation can 

minimizes the number of adder stages required to perform the summation of partial products. In this paper, a 

new design technique for row compression of dadda multipliers is presented. To estimate the PSNR value of any 

image, matrix multiplication is needed which in turn is produced from dada multiplier with carry select adder. 

 

Keywords:  Approximate adders, Carry Select Adder, Dadda Multiplier , ETA11,  Matrix 

Multiplication. 

 

I. INTRODUCTION 

 

1.1 Approximate Adders 

As an important arithmetic module, the adder plays a key role in determining the speed and power consumption 

of a digital signal processing system. The demands of high speed and power efficiency as well as the fault 

tolerance nature of some applications have promoted the development of approximate adders. As the physical 

dimensions of CMOS scale down to a few tens of nanometres, it has been increasingly difficult to improve 

circuit performance and to enhance power efficiency. Approximate computing has been advocated as a new 

approach to saving area and power dissipation, as well as increasing performance at a limited loss in accuracy.  

Approximate computing is motivated by the large and growing class of applications that demonstrate inherent 

error resilience, such as DSP, multimedia (images/audio/video),graphics, wireless communications, and 

emerging workloads such as recognition, mining, and synthesis. While computation errors are in general not 

desirable, applications such as multimedia (image, audio and video) processing, wireless communications, 

recognition, and data mining are tolerant to some errors. Due to the statistical nature of these applications, small 

errors in computation would not impose noticeable degradation in performance . 
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In a group of techniques that could be collectively classified as approximate computing, wherein the 

requirement of exact numerical or Boolean equivalence between the specification and implementation of a 

computing platform is relaxed in order to achieve improvements in performance or energy efficiency. These 

applications usually process large, redundant data sets that contain significant noise, by utilizing statistical or 

probabilistic computations. The requirement of numerical exactness on their outputs is relaxed due to several 

factors: (i) the limited perceptual capability of humans (e.g., audio, video, graphics), (ii) a golden result is 

difficult to defined or does not exist or (iii) users are willing to accept less-than-perfect results. Approximate 

computing in hardware is based on designs of hard- ware building blocks whose implementation does not 

exactly match the specification. 

Approximate adders have been proposed by using a reduced number of transistors  and by truncating the carry 

propagation chain for a speculation-based operation  An approximate speculative designs achieve a better 

performance in terms of area, power and delay compared to conventional (exact) adders. New metrics and 

simulation- based approaches have been proposed to model and evaluate approximate adders according to 

specific computational features. Monte Carlo or exhaustive simulation approaches have been employed to 

acquire data for analysis. This class of approaches are however time-consuming and require building functional 

models of the approximate designs. To improve efficiency, a mathematical characterization of the arithmetic 

accuracy of approximate adders is then required for a better understanding of the design prior to a simulation 

based evaluation. 

 In addition to generic metrics (such as the error rate (ER)), application specific measures (ASMs) such as the 

peak signal-to-noise ratio (PSNR) for image processing are well suited in practice. Without an approach to 

modeling the relationship between the generic metrics and the ASMs, extensive programming and simulation 

efforts are required to obtain the ASMs for assessing the impact and the potential of approximate computing in 

different applications. Therefore, an effective approach to obtain or estimate the ASMs from generic error 

metrics is needed however, there no formal methodologies or analytical approaches for these purposes.  

 

1.2 Multipliers 

Multipliers are often found in the critical path of signal processors. The multiplication is a slow operation and 

the improvement in the multiplier performance usually leads to higher operating speed. Historically, technology 

scaling has been used to improve the performance at a reduced energy budget. Unfortunately, technology 

scaling cannot sustain the constant power density because of the threshold voltage limitation. Therefore, the 

circuit implementation techniques and energy-delay tradeoff become critical. 

Energy efficient parallel multiplier design requires the exploration of multiplication algorithms, technology 

constraints and circuit implementation techniques. The parallel multipliers consist of three main computational 

blocks namely partial product generation, partial product reduction and final addition. The simplest way of 

partial product generation is AND operation . High speed multiplication is performed using Column 

Compression Multipliers such as Wallace and Dadda Multipliers. 
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II. EXISTING METHOD 

 

2.1 Error Tolerant Adder Type 11 (Eta11) 

The ETAII is also based on the truncation of the carry propagation chain and the segmentation of a full-sized 

adder .Compared to the ESA, the predicted carry input for each segmented k-bit sub-adder  is generated by k 

LSBs. The ETAII has an improved accuracy compared to the ESA, because it uses more information to predict 

the carry when the same k is used. 

 

 

Fig 1   Error Tolerant Adder (Eta11) 

2.2 Carry Select Adder 

In the so-called  carry select addition (CSA) an n-bit adder is first divided into  sub-adders (also known as 

“window adders”); each sub-adder consists of two k-bit adders: adder0 and adder1. The only difference between 

the two k-bit adders is the carry input; the carry of adder0 is “0” while it is “1” for adder1. The output of the ith 

sub-adder is selected from adder0 and adder1 based on the carry out signal generated by the (i − 1)th sub-adder. 

The carry out of each sub-adder is generated based on the k-bit in the sub-adder rather than all previous bits. 

Therefore, the carry selection process is still approximate and faster than a traditional carry selection scheme. 

Even though the CSA and the ETAII have different circuit implementations, they share a similar functionality if 

their sub-adders have the same length. The CSA and the ETAII generate the same carry signal for each sub-

adder (or the Sum Generator in the ETAII) even though by different circuit implementations. 
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Fig 2  Carry  Select Adder 

 

TABLE 1 Comparision Of Adders 

 

 ACA ESA ETAII SCSA 

K 10 10 6 10 

DELAY ps 580 490 460 370 

AREA ucm
2 398 394 254 234 

POWER µW 117.6 88.9 68.4 45.5 

ER% 4.74 2.7 1.8 0.05 

 

III. PROPOSED METHOD 

 

3.1 Dadda Multiplier 

In a popular multiplication scheme the array, the summation proceeds in a more regular, but slower manner, to 

obtaining the summation of the partial products .Using this scheme only one row of bits in the matrix is 

eliminated at each stage of the summation.  
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In a parallel multiplier the partial products are generated by using array of AND gates. The main problem is the 

summation of the partial products, and it is the time taken to perform this summation which determines the 

maximum speed at which a multiplier may operate. The Dadda scheme essentially minimizes the number of 

adder stages required to perform the summation of partial products. This is achieved by using full and half 

adders to reduce the number of rows in the matrix number of bits at each summation stage.   

Dadda multipliers are a refinement of the parallel multipliers presented by Wallace. Dadda multiplier consists of 

three stages. The partial product matrix is formed in the first stage by N2 AND stages. In the second stage, the 

partial product matrix is reduced to a height of two. Dadda replaced Wallace Pseudo adders with parallel (n, m) 

counters. A Parallel (n, m) counter is a circuit which has n inputs and produce m outputs which provide a binary 

count of the ONEs present at the inputs. A full adder is an implementation of a (3, 2) counter which takes 3 

inputs and produces 2 outputs. Similarly a half adder is an implementation of a (2, 2) counter which takes 2 

inputs and produces 2 outputs.  

In Dadda multipliers that reduce the number of rows as much as possible on each layer, Dadda multipliers do as 

few reductions as possible. Because of this, Dadda multipliers have less expensive reduction phase, but the 

numbers may be a few bits longer, thus requiring slightly bigger adders. In a parallel multiplier, the terms yi ^ 

(xn-1 - . . . x0) are known as the partial products and are generated using an array of AND gates. For a parallel 

multiplier, the shifting term 2i is inherent in the wiring and does not require any explicit hardware. Thus the 

main problem is the summation of the partial products, and it is the time taken to perform this summation which 

determines the maximum speed at which a multiplier may operate.    

Consider the process of multiplication of two binary numbers, each composed of n bit, as been based on 

obtaining the sum of v summands. These summands are obtained, in the simplest schemes, by shifting left the 

multiplicand by 1, 2, 3,….(n-1) places, and multiplying it by the corresponding bits of the multiplier. In this 

situation v = n. Now the number of summands can be made less than n by using some multiples of the 

multiplicand, on the basis of two or more multiplier digits. 

Hence a proposed architecture can be developed by L Dadda, which works on the principle of reducing the 

number of summands. This architecture is based on the use of logical blocks called it as parallel (n, m) counters, 

these are combinational networks with m outputs and n(≤ 2m) inputs. The m outputs, considered as a binary 

number, codify the number of « ones» present at the inputs. 

3.2 Algorithm 

1.Multiply (that is - AND) each bit of one of the arguments, by each bit of the other,  yielding N2 results.   

2.Reduce the number of partial products to two layers of full and half adders. For this, Dadda  reduction scheme 

uses the following algorithm.   

 a)Let d1 = 2 and dj+1 = [3.dj / 2], where dj is the matrix height for the j-th stage from the end. Find the largest j 

such that at least one column of the matrix has more than dj bits.   

  b)Employ (3, 2) and (2, 2) counters to obtain a reduced matrix with no more than dj elements in any column.  

c)Until a matrix with only two rows is generated. Let j = j-1 and repeat step b  
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3.Group the wires in two numbers, and add them with a conventional adder. 

Dadda generalized and extended Wallace’s results by noting that a full adder can be thought of as a circuit, 

which counts the number of ones in the input and outputs that number in 2-bit binary form. Using such a 

counter, Dadda postulated that, at each stage, only minimum amount of reduction should be done in order to 

reduce the partial product matrix by a factor of 1.5. Dadda’s method requires the same number of levels as that 

of Wallace method. 

 

Fig 3  8×8  Dadda Multiplier 

 

3.3 Matrix Multiplication 

For approximate matrix multiplication suggests itself : pick a random subset of s columns of A to form an m × s 

matrix S; form an s × p matrix R out of the corresponding columns of B. Then, intuitively, it follows from that 

the product SR is an estimator (entry by entry) of the product AB; the variance remains to be worked out. Our 

contribution to the above and is two-fold. First, instead of picking columns uniformly at random, we pick them 

according to some “more in teresting” probability distribution. In general, we pick a column with probability 

proportional to its length squared, which is a measure of the amount of “information” the column contains. 

Second, before including a column in the sample, we scale it in order to compensate for the columns that are not 

picked.  
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With these two improvements, interesting bounds can be proven for the error of the approximations. This 

approach for approximating matrix multiplication has obvious advantages. It is conceptually simple, it can be 

easily implemented and it can be generalized to approximate the product of more than 2 matrices. Also, since 

the “heart” of the algorithm involves matrix multiplication of smaller matrices, it can use any algorithms that 

exist in the literature for performing the desired matrix multiplication. 

 

3.4 PSNR 

This section presents an image processing application using the 8x8 bit multipliers. An image 

 

sharpening algorithm is considered and functionally implemented The processed image quality is measured by 

the peak signal noise ratio (PSNR); the PSNR quantifies the maximum possible power of signal and the power 

of an image with loss of accuracy following an additional process, such as compression and/or approximate 

computation. The PSNR is usually used to measure the quality of a reconstructive process involving information 

loss and is defined by the mean square error (MSE).   

 

IV. SIMULATION RESULT 

 

 

 

 

Fig 4 Multiplication Wave of Dadda Multiplier 
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                       Fig 5 Matrix Multiplication                                    Fig 6 Area Utilisation 

 

 

Fig  7  Power Analysis 
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V. CONCLUSION 

 

In this paper, an analytical framework has been proposed for characterizing approximate adder designs. This 

framework consists of models for the evaluation of three different types of approximate adders targeting several 

error metrics. In this paper dada multiplier is performed withy carry select adder The comparison result shows 

that the modified one reduces the number of half adders by 80%.. But Wallace and Modified Wallace reduction 

use more gates for their reduction than Dadda multiplier. CSA is introduced in the final carry propagation path 

of the multipliers. From all the comparison results we can conclude that the Dadda multiplier with CSA in the 

final carry propagation path is more efficient. 
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