2nd International Conference on Emerging Trends in Engineering and Management Research
(IETE) Institution of Electronics and Telecommunication Engineers, Pune, India(ICETEMR-17)28th May 2017, www.conferenceworld.inISBN: 978-93-86171-46-7

SPEED CONTROL OF SEPARATELY EXCITED D.C. MOTOR

Chayan Kumar¹, Prof. (Dr.) Deoraj Kumar Tanti²

¹Research Scholar, ²Associate Professor Electrical Department, Bit Sindri Dhanbad, (India)

ABSTRACT

This paper presents the speed control of a separately excited dc motor "A separately excited DC motor has a regulated or unregulated power supply that supplies power to the field winding that is completely independent from the power supplied to the armature". Conventional controllers are generally used to control the speed of the separately excited DC motors in various industrial applications. It is found to be simple and high effective if the load disturbances are small. So there will be drawback of Conventional controllers when high load has been applied to the DC motor. The system has been implemented using MATLAB/Simulink software. The simulations results show that presenting controller give good performance and high robustness in load disturbance. This paper is to design PID controller to supervise and control the speed response of the DC motor and MATLAB program is used for calculation and simulation PID controllers are widely used in a industrial plants because of their simplicity and robustness. Industrial processes are subjected to variation in parameters and parameter perturbations. We are choosing PID parameters and discussed.

Keywords: Dc motor, PID controller, MATLAB representation

I. INTRODUCTION

The DC motors have been popular in the industry control area for a long time, because they have many good characteristics, for example: high start torque characteristic, high response performance, easier to be linear control etc. The speed of a DC motor is given be the relationship

$$N = \frac{(V - IaRa)}{k\Phi}$$

This Equation show that the speed is dependent on the supply voltage V, the armature circuit resistance Ra, and field flux Φ , which is produced by the field current. This paper describes the MATLAB/ SIMULINK of the DC motor speed control method namely field resistance, armature voltage, armature resistance control method and feedback control system for DC motor drives When speed control over a wide range is required, combination of armature voltage control and field flux control is used. This combination permits the ratio of maximum to minimum speed to be 20 to 40. With closed loop control, this range can be extended up to 200. The parameters of the PID controller k_p , k_i and k_d (or k_p , T_i and T_d) can be manipulated to produce various response Curves from a given process

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

II. SEPARATELY EXCITED DC MOTOR

In case of Separately excited dc motor the field coil is energized from a separate DC voltage source and the armature coil is also energized from another source. Armature voltage source may be variable but, independent constant DC voltage is used for energizing the field coil. So, those coils are electrically isolated from each other, and this connection is the specialty of this type of DC motor.

2.1 Mathematical model and control theory

DC motors have speed-control capability, which means that speed, torque and even direction of rotation can be changed at any time to meet new conditions .The electric circuit of the armature and the free body diagram of the rotor are shown in the following figure

Fig-2

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

2.2 Parameters Of separately excited dc motor

Ra=Armature Resistance,

La=Armature self inductance caused by armature flux,

ia= Armature current,

if= field current,

Eb=Back EMF in armature,

V = Applied voltage,

T=Torque developed by the motor,

 θ = Angular displacement of the motor shaft

J =Equivalent moment of inertia of motor shaft & load referred to the motor,

B= Equivalent Coefficient of friction of motor shaft & load referred to the motor

2.3 Mathematical modelling of separately excited dc motor

The DC motors are generally used in the linear range of the magnetization curve. Therefore, air gap flux Φ is proportional of the field current i.e

 $\Phi \alpha i_f$

$$\Phi = k_f i_f$$
 (1)

Where k_f is a constant

The torque T developed by the motor is proportional to the armature current and air gap flux i.e.

TαΦi_a

$$\begin{split} T &= k_a \Phi i_a \\ T &= k_a k_f i_f i_a \\ T &= k i_f i_a \end{split} \tag{2}$$

Where k is motor constant

The motor back EMF being proportional to speed is given as **Eb** $\alpha \Phi w$

Eb=
$$k_b w$$

Eb= $k_b \frac{d\theta}{dt}$(3)

Where $K_b = back emf constant$

Applying KVL in the armature circuit

$$V = \operatorname{Ra} \operatorname{ia} + La \frac{dia}{dt} + Eb \dots (4)$$

And the dynamic quation with moment of inertia & coefficient of friction will be

28th May 2017, www.conferenceworld.in

And with load torque

$$T = J\frac{d2\theta}{dt^2} + b\frac{d\theta}{dt} + Tl \dots(6)$$

Take the laplace transform of equation of (2),(3), (4) and (5)

T(S)=Kia(S) $Eb(S)=KbS\theta(S)$ $V(S)=Ia(S)(Ra+SL_a)+Eb$ V(S)-Eb(S)=Ia(S)(Ra+Sla) $T(S)=(JS^2+SB)\theta(S)$ $T(S)=(JS+B)S\theta(S)$ T(S)=(JS+B)W(S) $T(S)=KI_a(S)$

2.4 Block diagram of armature controlled d. c. Motor

Field controlled dc motor is open loop while armature controlled is closed loop system. Hence armature controlled dc motor are preferred over field controlled system. For small size motor field control is advantageous because only a low power servo amplifier is required while the armature current which is not large can be supplied from an expensive constant current amplifier. For large size motor it is on the whole cheaper to use armature control scheme. Further in armature controlled motor, back emf contributes additional damping over and above that provided by load friction

2.4.1.Transfer function of armature controlled d. c. Motor

The transfer function of DC motor speed with respect to the input voltage can be written as follows

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

$$G(S) = \frac{W(S)}{V(S)} = \frac{K}{(Ra+SLa)(JS+B)+KKb}$$
.....(7)

From equation (7) the armature inductance is very small in practices, hence, the transfer function of DC motor speed to the input voltage can be simplified as Follows,

$$G(S) = \frac{W(S)}{V(S)} = \frac{Km}{\mu S+1}$$
.....(8)

Where,

 $Km = \frac{K}{RaB + KbK}$ is the motor gain and

$$\mu = \frac{RaJ}{RaB + KKt}$$
 is the motor time constant

2.4.1.1 MATLAB representation of transfer function of armature controlled d. c. Motor

We can represent the above open-loop transfer function of the motor in MATLAB by defining the parameters and transfer function as follows. Running this code in the command window produces the output shown below.

J = 0.01;B = 0.1; K = 0.01; Ra = 1; La = 0.5; s = tf('s'); P_ motor = K/((J*s + B)*(La*s + R)+K^2)

 $P_motor =$

0.01

 $0.005 \text{ s}^2 + 0.06 \text{ s} + 0.1001$

Continuous- time transfer function.

2.4.1.2 MATLAB representation of state space of armature controlled d. c. Motor

We can also represent the system using the state-space equations. The following additional MATLAB commands create a state-space model of the motor and produce the output shown below when run in the MATLAB command window.

A = [-B/J K/J -K/La -Ra/La];

33 | Page

2nd International Conference on Emerging Trends in Engineering and Management Research (IETE) Institution of Electronics and Telecommunication Engineers, Pune, India (ICETEMR-17) 20th Marcola Conference on Emerging Trends in Engineers, Pune, India (ICETEMR-17)

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

B = [0]1/La]; $C = [1 \ 0];$ D = 0;Motor $_$ ss = ss(A,B,C,D) motor_ss = **a** = x1 x2 x1 -10 1 x2 -0.02 -2 **b** = u1 x1 0 x2 2 **c** = x1 x2 y1 1 0 **d** = u1 y1 0

Continuous- time state-space model.

The above state-space model can also be generated by converting your existing transfer function model into state-space form. This is again accomplished with the ss command as shown below.

motor_ss = ss(P_motor);

III. CONTROLLER

A controller is a device, may be in the form of analogue circuit, chip or computer that monitors and physically alters the operating conditions of a given dynamical system. From the past decades, the importance of the control system has been increased due to the increment in complexity of the system under control and to achieve optimum performance of the system. The block diagram of closed-loop separately excited dc motor is shown in Figure below.

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

3.1. Proportional-Integral Controller

The combination of proportional and integral terms is important to increase the speed of the response and also to eliminate the steady state error. C(s) the transfer function of PI controller has the form of

Block Diagram of PI controller

Where, KP is proportional gain and KI is an Integral gain. The proportional term (sometimes called gain) makes a change to the output that is proportional to the current error value. The proportional response can be adjusted by multiplying the error by a constant Kp, called the proportional gain. The contribution from the integral term sometimes called reset is proportional to both the magnitude of the error and the duration of the error.

3.2 Proportional-Integral-Derivative Controller

A proportional-integral-derivative controller (PID controller) is a generic control loop feedback mechanism widely used in industrial control systems - a PID is the most commonly used feedback controller.

A PID controller calculates an "error" value as the difference between a measured process variable and a desired set point. The controller attempts to minimize the error by adjusting the process control inputs. In this section, the method to obtain the controller for the car suspension system is described when a PID scheme is used to perform control actions and C(s) the transfer function of PID controller has a form

 $C(s) = K_{P+}K_{I}/S + K_{D}S$ (2)

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

Block Diagram of PID controller

The PID controller calculation involves three separate parameters, and is accordingly sometimes called threeterm control: the proportional, the integral and derivative values, denoted P, I, and D.

IV. MATLAB REPRESENTATION AND SYSTEM RESPONSE

The combination of proportional, integral and derivative control action is called PID action control and the controller is called three action controllers. Here the proportional part of the control action repeats the change of error and derivative part of the control action adds an increment of output so that proportional plus derivative action is shifted ahead in time. The integral part ads a further increment of output proportional to the area under the deviation line. The combination of proportional, integral an derivative action may be made in any sequence as shown. Now, we increase the gain Kd, with Kp=5; Ki=10. All results are illustrated in the Table 3 and the corresponding plots are shown in Fig .From the results we see that the rise time increase from (0.50 sec to 0.82sec) for (Kd=1 to Kd=4) and the overshoot from (23% to 12%) and there is small change in the settling time. Hence the steady state error is completely zero.

Kd	Rise	Maximum	Steady State	Peak Amplitude of
	Time(sec)	Overshoot	Error	Velocity (red/sec)

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

		(%)		
1	0.50	23.39	0	40
2	0.65	15.95	0	40
3	0.71	14.52	0	40
4	0.82	12.58	0	40

Table – 1 PID Control

So now we know that if we use a PID controller with: Kp=4,ki=1 and Kd=1; all our design requirements will be satisfied and the response looks like

Effects of PID controllers parameters kp, ki and kd on a closed loop system are summarized in the table below.

37 | Page

28th May 2017, www.conferenceworld.in

ISBN: 978-93-86171-46-7

Closed loop	Rise Time(sec)	Maximum	Settling	Steady State
Response		Overshoot(%)	Time(sec)	Error
As increase of K _P	Decrease	Increase	Small change	Decrease
As increase of K _I	Decrease	Increase	Increase	Eliminate
As increase of K _D	Small change	Decrease	Decrease	Small change

Table- 2

V. CONCLUSION

Accurate performance of a motor is desired feature for any industrial application. As the age of motor increases its performance also deceases with aging, so it is desired to evaluate the performance of motor from time to time for efficient operation. The conventional method for calculating output performance indices are quite time consuming. The PID based approach algorithm worked satisfactory for the test system. The important observations made during the studies are

- 1) The solution time for proposed PID approach is only a fraction of time taken by conventional algorithm.
- 2) A proportional controller Kp will have the effect of reducing the rise time and reduce but never eliminate the steady state error.
- 3) An internal controller Ki will have the effect of eliminate the steady state error but it may make the transient response worse.
- 4) A derivative controller Kd will have the effect of increasing the stability of the system and reducing the overshoot and improve the transient response.
- 5) The output performance obtained by normalized value in PID is very close and near to accuracy.
- 6) MATLAB used for simulation of entire project is sophisticated and user friendly software. It must be mentioned that the efficiency of the speed algorithm can be improved by using more efficient learning techniques and dynamic weight selection algorithm.

REFERENCES

- [1.] Fatiha Loucif "DC Motor Speed Control Using PID controller" depatment of electrical engg and information, hunan university, Changsha, hunan, china(E-mail: fatiha2002@msn.com) in june 2-5 KINTEX, Gonggi, kora in ICCAS2005.
- [2.] Guoshing Huang, Shuocheng Lee Department of Electronic Engineering, National Chin-Yi University of Technology, 35, Lane 215, Chung-Shan Rd., Sec. 1, Taiping, Taichung, Taiwan, 41111, ROC Email:hgs@ncut.edu.tw in PC-based PID Speed Control in DC Motor 2008 IEEE page no 400-407.
- [3.] Saffet Ayasun, Gu" Ltekin Karbeyaz Department of Electrical and Electronics Engineering, Nigde
- [4.] University, Nigde 51100, Turkey 12 March 2007 Wiley Periodicals Inc
- [5.] Electrical machine by Dr.P S Bimbhra by Khanna publishers New Edition

2nd International Conference on Emerging Trends in Engineering and Management Research (ICETEMR-17) (IETE) Institution of Electronics and Telecommunication Engineers, Pune, India ISBN: 978-93-86171-46-7

28th May 2017, www.conferenceworld.in

- [6.] Automatic control systm by S Hasan saeed, published by S K Kataria vol vi
- [7.] Control system engineering, by Nagrath & Gopal, published by New Age International publishers Fifth Edition.
- [8.] W. Leonhard, Control of Electrical Drives, .Td, Springer-Verlag, 1985.
- [9.] Z. Liu and F. Luo, "Nonlinear multi-input multi-output control of demotor in fieldweakening region", International Conference on Electric Machines and
- [10.] Drives, pp. 688-690, 1999.
- [11.] M.R. Matausek, B.I. Jeftenic, D.M. Miljkovic, and M.Z. Bebic,
- [12.] "Gainscheduling control of dc motor drive with field weakening",
- [13.] IEEETrans. on Industrial Electronics, pp. 153-162, Feb. 1996.