VERTEX EQUITABLE LABELING OF UNION OF CYCLIC SNAKE IN TRANSFORMED TREES

A. Maheswari ${ }^{1}$, K.Thanalakshmi ${ }^{2}$
1,2 Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar, (India)

Abstract

Let G be a graph with p vertices and q edges and $A=\left\{0,1,2, \ldots,\left\lceil\frac{q}{2}\right\rceil\right\} . A$ vertex labeling $f: V(G) \rightarrow A$ induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$. For $a \in A$, let $v_{f}(a)$ be the number of vertices v with $f(v)=a$. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are 1,2,3,.., q. In this paper, we prove that $T \hat{O} n C_{4}$ and zig -

 zag triangle are vertex equitable graphs.
Key Words: Vertex Equitable Labeling, Vertex Equitable Graph

AMS Classification (2010): 05C78

I INTRODUCTION

All graphs considered here are simple, finite, connected and undirected .We follow the basic notations and terminologies of graph theory as in [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [2]. The vertex set and the edge set of a graph are denoted by $V(G)$ and $E(G)$ respectively. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [3] and further studied in [4-12]. Let G be a graph with p vertices and q edges and $A=\left\{0,1,2, \ldots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A graph G is said to be vertex equitable if there exists a vertex labeling $\quad f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such

02- Days, International Conference on Recent Trends in Engineering Science, Humanities and Management Sri S Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India
 (RTESHM-17) 02nd-03rd February 2017, www.conferenceworld.in
 ISBN: 978-93-86171-18-4

that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \ldots, q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits vertex equitable labeling. In this paper we extend our study on vertex equitable labeling and prove that $T \hat{O} n C_{4}$ and zig - zag triangle are vertex equitable graphs.
We use the following definitions in the subsequent section.

Definition 1.2. Let $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$ be n graphs and u_{i} be a vertex of G_{i} for $1 \leq i \leq n$. The graph obtained by adding an edge between u_{i} and u_{i+1} for $1 \leq i \leq n-1$ is called a path union of $G_{1}, G_{2}, \ldots, G_{n}$ and is denoted by $P\left(G_{1}, G_{2}\right.$, $\left.\ldots, G_{n}\right)$. When all the n graphs are isomorphic to a graph G , it is denoted by $P(n . G)$.

Definition 1.3. [13] A $n C_{k}$-snake is defined as a connected graph in which all the n-blocks are isomorphic to the cycle C_{k} and the block-cut point graph is a path. Let P be the path of minimum length that contains all the cut vertices of a $n C_{k}$-snake. Any $n C_{k}$-snake can be represented by a string $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n-2}$ of integers of length $n-2$ where the $i^{\text {th }}$ integer, s_{i}, on the string is the distance between $i^{\text {th }}$ and $(i+1)^{\text {th }}$ cut vertices on the path P from one extreme and is taken from $S_{k}=\left\{1,2, \ldots,\left\lfloor\frac{k}{2}\right\rfloor\right\}$. The strings obtained for both extremes are assumed to be the same. For example, the string of a $10 C_{4}$-snake is shown in Figure 1.1 is $2,2,1,2,1,1,2,1$.

Figure 1.1: An Embedding of $10 C_{4}$-Snake

A $n C_{k}$-snake is said to be linear if each integer of its string is $\left\lfloor\frac{k}{2}\right\rfloor$.The $n C_{4}$-snake graph with diagonal vertices are $u_{l j}(1 \leq j \leq n+1)$, left to the diagonal vertices are $v_{l j}(1 \leq j \leq n)$ and right to the diagonal vertices are $w_{1 j}$ $(1 \leq j \leq n)$.

02- Days, International Conference on Recent Trends in Engineering Science, Humanities and Management Sri S Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India

Definition 1.4: Let H be any graph with n vertices $v_{l}, v_{2}, \ldots, v_{n}$ and let $G_{1}, G_{2}, \ldots, G_{n}$ be n graphs. Then $H \hat{O}\left(G_{1}\right.$, $\left.G_{2}, \ldots, G_{n}\right)$ is a graph obtained by identifying a vertex u_{i} of G_{i} with a vertex v_{i} of H for $1 \leq i \leq n$. If all the graphs G_{i} are isomorphic to a graph G, then the graph is denoted by $H \hat{O} G$ Again $H \tilde{O}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ is a graph obtained by joining a vertex u_{i} of G_{i} with a vertex v_{i} of H by an edge for $1 \leq i \leq n$. If all the graphs G_{i} are isomorphic to a graph G, then the graph is denoted by $H \tilde{O} G$.

Definition 1.3. Let G be a graph obtained from the path $P_{n} ; x_{1} x_{2} \ldots x_{n}$ adding a new vertices $y_{1} y_{2} \ldots y_{n}$ and new edges $y_{1} x_{2}, y_{n} x_{n-1} ; x_{i} y_{i}$ for $1 \leq i \leq n \cdot v \cdot x_{i-1}, y_{i} x_{i+1}$ for $2 \leq i \leq n-1$. The family of graphs is called zig-zag triangle.

Definition 1.4[14]. Let T be a tree and u_{o} and v_{0} be the two adjacent vertices in T. Let u and v be the two pendant vertices of T such that the length of the path $u_{0}-u$ is equal to the length of the path $v_{0}-v$. If the edge $u_{0} v_{0}$ is deleted from T and u and v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called transformable edge.

If by the sequence of ept's, T can be reduced to a path, then T is called a T_{p}-tree (transformed tree) and such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$.

A T_{P}-tree and the sequence of two ept's reducing it to a path are illustrated in Figure 1.2.
a) A T_{P}-tree T
b) An ept $P_{l}(T)$
c) Second ept $P_{2}(T)$

Figure1.2

II MAIN RESULTS

Theorem 2.1. If T be a T_{p}-tree on m vertices, then the graph $T \hat{O}{ }_{n} C_{4}$ is a vertex equitable graph.

Proof: Let T be a T_{p}-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$ where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{l}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively by $u_{1}, u_{2}, \ldots, u_{m}$ starting from one pendant vertex of $P(T)$ right up to the other one. Let $u_{i 1}, u_{i 2}, \ldots, u_{i(n+1)}, v_{i 1}, v_{i 2}, \ldots, v_{i n}$ and $w_{i 1}, w_{i 2}, \ldots, w_{i n}(1 \leq i \leq m)$ be the vertices of $i^{\text {ih }}$ copy of $\quad P_{n} \quad$ with $\quad u_{i(n+1)}=u_{i}^{\prime}$.Then $\quad V\left(T \hat{O} n C_{4}\right)$ $=\left\{u_{i j}: 1 \leq i \leq m, 1 \leq j \leq n+1\right.$ with $\left.u_{i(n+1)}=u_{i}^{\prime}\right\} \cup\left\{u_{i}^{\prime}, v_{i j}, w_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $\mathrm{E}\left(T \hat{O}_{n} C_{4}\right)=\mathrm{E}(\mathrm{T})$ $\cup \mathrm{E}\left(n C_{4}\right)$. Here $\left|V\left(T \hat{O}_{n} C_{4}\right)\right|=m(3 n+1)$ and $\left|E\left(T \hat{O}_{n C_{4}}\right)\right|=4 m n+m-1$. Let $A=\{0,1,2, \ldots$, $\left.\left\lceil\frac{4 m n+m-1}{2}\right\rceil\right\}$. Define a vertex labeling $f: V\left(T \hat{O} n C_{4}\right) \rightarrow \mathrm{A}$ as follows.

For $1 \leq i \leq m, 1 \leq j \leq n+1 \quad f\left(u_{i j}\right)=\left\{\begin{array}{l}\frac{(4 n+1)(i-1)}{2}+2(j-1) \text { if } i \text { is odd } \\ \frac{(4 n+1) i}{2}-2(j-1) \quad \text { if } i \text { is even }\end{array}\right.$.

For $1 \leq i \leq m, 1 \leq j \leq n$
$f\left(v_{i j}\right)=\left\{\begin{array}{ll}\frac{(4 n+1)(i-1)}{2}+2 j & \text { if } i \text { is odd } \\ \frac{(4 n+1) i}{2}-2 j & \text { if } i \text { is even }\end{array}, \quad f\left(w_{i j}\right)=\left\{\begin{array}{ll}\frac{(4 n+1)(i-1)}{2}+2 j-1 \text { if } i \text { is odd } \\ \frac{(4 n+1) i}{2}-(2 j-1) & \text { if } i \text { is even }\end{array}\right.\right.$.
Let $v_{i} v_{j}$ be a transformed edge in T for some indices $i, j, 1 \leq i \leq j \leq m$. Let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds an edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t} Let P be a parallel transformation of T that contains P_{l} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_{i} v_{j}$ is given by $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)$ $=(4 n+1)(i+t)$
and $\quad f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=f\left(v_{i+t}\right)+f\left(v_{i} v_{i+t+1}\right)=(4 n+1)(i+t)$

Therefore, $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$ It can be verified that the induced edge labels of $T \hat{O} n C_{4}$ are $1,2,3, \ldots, 8 m n+2 m-2$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence, $T \hat{O} n C_{4}$ is a vertex equitable graph.

An example for the vertex equitable labeling of $T \hat{O} 2 C_{4}$ where T is a T_{p}-tree on 8 vertices is shown in Figure 2.2.

Figure 2.2.

Theorem 2.2. If G is a zig-zag triangle, then G is a vertex equitable graph.
Proof: Let zig-zag triangles be defined as in definition 1.3. Here $|V(G)|=2 n$ and $|E(G)|=4 n-3$. Let $A=\{0,1$,
$\left.2, \ldots,\left\lceil\frac{4 n-3}{2}\right\rceil\right\}$. Define a vertex labeling $f: V(G) \rightarrow \mathrm{A}$ as follows. $f\left(y_{1}\right)=1, f\left(x_{1}\right)=0$,
$f\left(x_{4 i-2}\right)=8 i-5, f\left(y_{4 i-2}\right)=8 i-6$ if $\quad 1 \leq i \leq\left\lfloor\frac{n+2}{4}\right\rfloor$
$f\left(x_{4 i-1}\right)=8 i-4, f\left(y_{4 i-1}\right)=8 i-3$ if $\quad 1 \leq i \leq\left\lfloor\frac{n+1}{4}\right\rfloor$
$f\left(x_{4 i}\right)=8 i-2, f\left(y_{4 i}\right)=8 i$ if $\quad 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor$

For $1 \leq i \leq\left\lfloor\frac{n-1}{4}\right\rfloor$ and $n>4 f\left(x_{4 i+1}\right)=8 i+1, f\left(y_{4 i+1}\right)=8 i-1$.

It can be verified that the induced edge labels of G are $1,2, \ldots, 4 n-3$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence a zig-zag triangle is a vertex equitable graph.

An example for the vertex equitable labeling of zig-zag triangle is shown in Figure 2.3.

Figure 2.3

02- Days, International Conference on Recent Trends in Engineering Science, Humanities and Management Sri S Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India
 (RTESHM-17) 02nd-03rd February 2017, www.conferenceworld.in
 ISBN: 978-93-86171-18-4
 REFERENCES

[1]. F.Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
[2]. Joseph A.Gallian, A Dynamic Survey of graph labeling, The Electronic Journal of Combinatorics, DS6, 2016.
[3]. A.Lourdusamy and M.Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences \&Cryptography, Vol.11, No. 6 (2008), .727-735.
[4]. P.Jeyanthi and A.Maheswari, Some Results on Vertex Equitable Labeling, Open Journal of Discrete Mathematics, 2(2012), 51-57.
[5].P.Jeyanthi and A.Maheswari, Vertex equitable labeling of cycle and path related graphs, Utilitas Mathematica, 98(2015), 215-226.
[6].P.Jeyanthi and A.Maheswari, Vertex equitable labeling of Transformed Trees, Journal of Algorithms and Computation 44 (2013), 9-20.
[7].P.Jeyanthi and A.Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, Journal of ScientificResearch,Vol. 6,No.1(2014),79-85.
[8] .P.Jeyanthi ,A.Maheswari and M.Vijayalakshmi Vertex equitable labeling of cycle and star related graphs, Journal of Scientific Research, Vol. 7,No3(2015),33-42.
[9]..P.Jeyanthi A.Maheswari and M.Vijaya Lakshmi, Vertex equitable labeling of double alternate snake graphs Journal of Algorithms and Computation, 46 (2015) PP. 27 - 34.
[10].P.Jeyanthi A.Maheswari, and M.Vijaya Lakshmi , New results on vertex equitable labeling,Journal of Algebra Combinatorics Discrete structures and Applications Vol 3(2) (2016) 97-104..
[11].P.Jeyanthi A.Maheswari, and M.Vijaya Lakshmi , Vertex Equitable Labeling of Super Subdivision Graphs Scientific International, 27(4)(2015),1-3.
[12].P.Jeyanthi, A.Maheswari and M.Vijaya Lakshmi, Vertex Equitable Labeling of Union of Cyclic Snake graphs, Proyecciones Journal of Mathematics,Vol. 35, No2, pp. 177-186, June 2016.
[13].C.Barrientos,Graceful labeling of cyclic snakes ,Ars Combinatoria ,60(2001), 85-96.
[14]. S. M. Hegde, and Sudhakar Shetty,On Graceful Trees, Applied Mathematics E- Notes, 2, pp. 192-197, (2002).

